
Sensors in Space

A science project by

Moonty1

Team Members:

Sarah Buckley,
Sean Murphy,
Dylan Halpin Hurley

(and Rachel Sheehan)
Supervising Teacher: L. Begley

Mayfield Community School

SciFest, CIT, March 2017
1

MCS 2016/2017

Contents

● Meet the Team

● Summary

● Introduction

● Background Research

● Experimental Methods

● Results

● Conclusions and Recommendations

● Acknowledgements

● References

● Appendices

2
MCS 2016/2017

Meet the team
We are transition year students in Mayfield Community School in Cork.
In September, our teacher encouraged a number of us to enter a
competition to develop an App for Android devices. We didn’t complete
our entries but when he told us about this ESA competition we decided
to try our hand at coding again and complete it this time. We just
recently learned that our entries for the two programming challenges has
been successful and our code will be run on a Raspberry Pi computer on
the International Space Station at the beginning of May.
We are:

● Sarah Buckley : Team leader, main job was to make sure
everyone knew when and where to meet and what they were to
do.

○ Also to help the other team members with their own jobs.

● Dylan Halpin Hurley : Main job was writing the code for the images
that would appear on the LED Matrix.

○ Also helping to tidy up the code at the end.

● Sean Murphy : Main job was writing the code for the Bendyfield
code.

○ Also checking form areas we could improve on.

For the AstroPi project we had four members on our team but we can
only enter three names for SciFest. Rachel drew the short straw but this
is what she did:

● Rachel Sheehan : Main job was deciding the colours for the
images that would appear on the LED Matrix.

○ Also helping to tidy up the code at the end.

3
MCS 2016/2017

Summary
We started this project when we entered the Astro pi challenge that was
run by the European Space Agency (ESA).
For this competition we had to write two different programs using the
Python programming language.
The first part of the competition was to write code to detect movements
in and out of the Columbus Module on the ISS. We did this by using the
the humidity sensor on the AstroPi version of the Raspberry Pi. We
called this program Astrobods.
The second part of this competition was to write a program to conduct an
experiment of our choice. The experiment we decided to do was to write
code to detect any anomalies in the earth’s magnetic field such as the
South Atlantic Anomaly. We call this program Bendyfield.
We completed this by using the magnetometer sensor on the Raspberry
Pi, and also by using the orientation sensor and the accelerometer to
cross-reference any anomalies detected, so as to make any data
collected more accurate.
Once we were finished our code we sent it away to be judged and
patiently waited for the results. A while later we found out that we were
the Irish winners and our code would be going to the ISS.
We have developed an Excel worksheet to analyse the data that will be
collected. It uses a Line Chart to present the Astrobod data and Radar
Charts to present the 3_D data from Bendyfield.

4
MCS 2016/2017

Introduction
When we first heard this competition, we thought that it would be a great
opportunity to, firstly, learn more about coding and secondly, to collect
data on the subject of our experiment (which we later decided would be
the earth’s magnetic field) right from the source rather than analysing
data that was collected by someone else.
We chose the magnetic field as the subject of our experiment as it has
been discovered that it is not a straightforward pattern but has bumps
and anomalies at certain places.
We thought that this would be a good choice of experiment as it was a
once in a lifetime chance to be able to collect such data, that we would
be able to analyse later if our code was chosen.
Also to get this code to work and to work accurately we would have to
write an intricate code that would hopefully make us stand out from our
competitors.
This competition had two parts. In the first part, everyone who entered
had to do the same challenge, which was to detect movement in and out
of the Columbus Module of the International Space Station (ISS).
This was the first piece of coding that some of us had ever done so was
hard. Our teacher was very helpful and very patient. This code is called
Astrobods and is organised into three files.
We used this code sort of as practice before moving on to the harder
second part. We called this code Bendyfield and it is also organised into
three files.
We should also add that some of us had previously entered an App
development competition but didn’t manage to complete it. This was a
chance for Sean, Dylan and Rachel to try again and complete the
course.

5
MCS 2016/2017

Background Research
One of the first things we had to research was Python Programing
language, as three of us had never worked with coding before. We used
Python 3.4.2 which is pre-loaded on the Raspberry Pi. After that we had
to research the Raspberry Pi, how it works and the sensors that come
with the additional attachment called the SenseHat.

The AstroPi was developed by the Raspberry Pi Foundation in the UK
and the UK Space Agency. The astronaut Tim Peake brought two of
these to the ISS and they are still there.

The thing we most had to research was the earth’s magnetic field.
For this we researched magnetic anomalies which was what our
experiment was about.

We also had to research about how to code the accelerometer,
gyroscope and magnetometer sensors to work the way we needed them
to for our Bendyfield program.

The AstroPi website (www.astropi.org) was a great help with these tasks
thanks to it’s helpful videos and reference materials and also the Python
tutor websites.

We found a lot of information on the NASA website and also the
European Space Agency’s website .

6
MCS 2016/2017

http://www.astropi.org/

Experimental methods
Astrobods:
In the first part of the competition we had to detect crew movements in
and out of the Columbus Module, we did this by using a humidity sensor
to monitor crew entering and leaving the module by comparing humidity
levels with baseline humidity.
We wrote our code in the programming language Python 3.4.2.
The code samples the humidity at 10 second intervals.
The code also re-samples the baseline humidity at regular intervals.
To make our code easy to read we split it into three parts, Astrobods_8a
was the main program, Astrobods_8b was the functions file and
Astrobods_8c was the file for the LED matrix images. This made the
code easy to read as we were able to do all calculations in the functions
file and just have the settings and main loop in the main program.
For the LED matrix images, we first had to design what image would
appear on the matrix before coding it.
We also had to decide on small things like colour, we had to think about
how the colours would look on ISS and how bright it would appear.
For this program we had to make multiple images for each possible
outcome.
The image we picked was of a stickman with the number of the crew that
had left or entered.

Bendyfield:
For the second part of the competition we chose to do our experiment on
the earth’s magnetic field. The ISS is in low earth orbit and so it should
be able to detect anomalies such as the south atlantic anomaly.
Our experiment was to find any anomalies in the magnetic field.
To do this we used a magnetometer sensor to track 3-dimensional
changes in the earth’s magnetic field in microTeslas () andTμ
cross-reference any anomalies against any changes in ISS orientation
using the orientation sensor (pitch, roll and yaw measured in degrees),
orientation towards geomagnetic north using the compass or against

7
MCS 2016/2017

changes detected by the accelerometer such as rocket boosters firing to
adjust the ISS orbit.
While it does this it also takes note of the date and time.
Our main problem is that we will only get to run our code for 90 minutes,
which is the time it takes for the ISS to orbit the earth once. We just
hope we are lucky with the orbit direction when our code is run.
For this code we did the same as the first, splitting it into three parts.
We also wrote this code in Python 3.4.2.
The sampling time for this code is 1 second intervals for each of the
sensors.
Bendyfield_8a was the main program, Bendyfield_8b was the functions
file and Bendyfield_8c was the LED matrix images, this as it did in the
first part makes the code easier to read and understand.
As this program wasn't an interactive one we only had one LED matrix
image appear.

Program Output:
The LED display is the only visible output on the ISS but other messages
are displayed on the Python window to show the progress of the
program. These are visible on the monitor attached to our AstroPi on
our display stand.

8
MCS 2016/2017

Results
As our code has yet to actually go up to the ISS.
we don’t have any results from our actual experiment but we do have
test data from when we were testing our code. We have also developed
an excel sheet to analyse the data we get back in May.
Breathing on the Humidity sensor can be used to test the Astrobods
program, either while the baseline is set, whereby you can end up with
negative numbers indicating a crew member exit; or after the baseline is
set, whereby you end up with positive numbers indicating a crew
member entrance.
Our program allows for up to 8 crew members entering or leaving.
According to www.space.com, the most people to be on the ISS at any
one time so far is thirteen, but that is only when the crew were joined by
crew from the transport rocket that docked with them.
We tested Bendyfield by moving the SenseHat around to get gyroscope,
compass, accelerometer and primarily magnetometer data changes and
also a bar magnet to cause changes in the magnetic field.
The data file for Bendyfield has a wider mix of data than Astrobods but
there was very little User Interface code to worry about.

There was quite a bit of difficult maths in getting the logic that controlled
the code but our teacher helped a lot with that.

Examples of the test data and charts for Astrobods and Bendyfield are in
the Appendix.

The Astrobods results are presented using a Line Chart.
The Bendyfield results are presented using three Radar Charts.

9
MCS 2016/2017

http://www.space.com/

Conclusions
We now know that our code was chosen and we are the Irish winners.
Our code will now be uplinked to the ISS to run on the Astro Pi’s in the
Columbus module, once the data is collected it will be downlinked to
Earth and we will receive it by the 15th of May 2017.
We will then be able to analyse the data and conclude our experiment.
What we can say at this point is that the code works with our test data
under simulated conditions, but that the proof of the pudding will be in
the data files that come back to us from space. It’s kinda cool.

10
MCS 2016/2017

Acknowledgements
We would like to give our thanks to the European Space Agency for the
help they gave to start us off on our program.
We would also like to thank our teacher Mr. Begley for teaching us how
to code and all the other help he gave us.
We would like to thank our school for timetabling Computer Studies for
us in Transition Year and for making the school computer and IT
facilities available to us.
We would like to thank Mr. Eddie Higgins for loaning us two Raspberry
Pi computers.
We would like to thank you for taking the time to read our project file and
we hope you take the opportunity to try out the AstroPi computers and
our Astrobods and Bendyfield programs while visiting our stand.

11
MCS 2016/2017

References
Some of the websites we used were

● astro-pi.org/resources/
● www.raspberrypi.org/learning/astro-pi-guide/
● http://www.esa.int
● www.python.org
● www.space.com

12
MCS 2016/2017

http://www.python.org/

Appendices

1. ESA notification:

Dear Moonty1 Team,
Congratulations! Your code has been qualified to fly and run on the International Space
Station (ISS).

ESA, in collaboration with the Raspberry Pi Foundation, would like to congratulate you all for
your excellent work!

After receiving more than 180 entries, it was very difficult to choose the best experiments to
run on the ISS. An evaluation panel, composed of ESA and the Raspberry Pi Foundation,
selected the experiments that have been qualified to fly. The submissions were evaluated
based on the following criteria: scientific value, innovation, feasibility of the mission within the
ISS environment, clarity, comprehensiveness, code quality and readability. Please find
below a short comment from the jury about your mission:

The judges were impressed by how well structured and commented your code was, great
use of custom modules to keep everything neat and tidy. They were particularly amused by
the where_is_santa function. Great work!
Your code will now be uplinked to the ISS to run on the Astro Pi’s in the Columbus module,
under the careful supervision of ESA astronaut Thomas Pesquet. The collected data will be
downlinked to Earth and distributed to the teams by 15 May 2017. You will then have the
chance to analyse the data collected in space and continue your amazing work – like a real
space scientist!
Once again, we would like to congratulate all of the teams, students, and teachers, that
participated in this project.

Kind Regards,
The ESA Education Team

13
MCS 2016/2017

2. Astrobods Code
a) Astrobods_9a.py

Moonty1 #

The first Challenge! #

Astronaut detector program: Astrobods #

This will record the mean background humidity of the Columbus module. #
It will then monitor for changes in humidity. #
If the changes are more than 4% (i.e. more than one person exit/entry #
then it records this. #
The mean background humidity is re-sampled at intervals. #
As the data is monitored, it is also stored in a log file #

This program will run for approximately 86 minutes #
(85 minutes of crew monitoring, 1 minute for base humidity resets #
and a margin for delays in input, output and CPU time) #

Team members: Sarah Buckley, Dylan Halpin-Hurly, Rachel Sheehan, #
Sean Murphy (and Mr Begley) #

version 8 #

The main program #

#import libraries
from sense_hat import SenseHat
import datetime
from time import gmtime, strftime
import statistics
import math
import Astrobods_9b as astrof # import the functions file
import Astrobods_9c as astroi # import the LED matrix images

set aliases

sense = SenseHat()

#############################
Welcome to the program #
En Francais: Bienvenue #
As Gaeilge: Dia dhaobh #
#############################

14
MCS 2016/2017

sense.set_rotation(270) # arrange for the messages to read the right way up in the ISS
#sense.show_message("Moonty1 from Cork: Astrobods",
text_colour=[128, 128, 128],
scroll_speed= 0.03) # say Hello!
show splash image on the LED matrix in white text
astroi.show_splash()
print("Starting Astrobods crew-tracking program")

#####################################
Program Settings #
#####################################
precision = 2 # Set the precision of the readings
baseline_time = 10 # number of seconds to use for baseline readings
sample_time = 10 # number of seconds in each loop that monitors humidity
one_astrobod = 0.04 # humidity change for one crew member i.e. 4%
astrobod_runs = int(86*60/10) # number of cycles for the program to run (less than 1.5 hours)
baseline_gap = 15*60/10 # the number of loops to do before recalculating the baseline
astrobod_change = 0 # initialise the number of crew members entering or leaving
log_line = [] # initialise the list of data we will send to the log file
output_string = "" # initialise the string that will contain the data
#####################################
Log file settings #
#####################################
filename = "Astrobods.csv"
WRITE_FREQUENCY = 1
astrof.setup_log_file(filename, precision)
print("Runs:", astrobod_runs, "Gap:", baseline_gap, astrobod_runs % baseline_gap)

#####################################
Main Loop #
#####################################
for timer in range(0 , astrobod_runs):
 print("Run number: ", timer+1)
 log_line = [] # reset the log_line data list
 output_line = [] # reset the output string
 #
 # note the date and time
 #
 timestamp = strftime("%d/%m/%Y %H:%M:%S", gmtime())
 log_line.append(timestamp) # time stamp the data
 #
 # is it time for a new baseline reading and astrobod_change?
 #
 if ((timer % baseline_gap) == 0): # use Modulo to decide when the baseline gap is reached
 print("Resetting the baseline humidity value...")
 #astroi.show_splash() # display the question mark until there is a crew change
 #astroi.show_plus_4()
 baseline_humidity = astrof.get_baseline_humidity(baseline_time, precision)
 astrobod_change = 0 # reset the change-of-crew-member count
 print("Baseline humidity: ", baseline_humidity, "mb")
 log_line.append(baseline_humidity)
 #
 # Has someone entered or left?
 #

15
MCS 2016/2017

 # 1. Has the humidity changed significantly from the baseline humidity
 # by at least 4% (or one_astrobod humidity value)
 # over the number of seconds in the sample_time variable
 # to the number of decimal places in the precision variable
 #
 humidity_change = astrof.monitor_humidity(baseline_humidity, sample_time, one_astrobod, precision)
 print("Humidity change over", sample_time, "seconds: ", humidity_change, "%")
 log_line.append(sample_time) # timestamp the log line
 log_line.append(humidity_change) # record the % humidity change in the log line
 #
 # if the humidity change is more than + or - 4% then yes
 # if no other factors involved, each change of approximately 4% should be the same as
 # one crew member
 #
 # 2. How many have either come in or gone out?
 #
 if (humidity_change != 0): # if the humidity_change is not zero
 astrobod_change = round(humidity_change/(one_astrobod*100))
 # divide by one crew members humidity to see how many came in or out
 # -1 means one crew member has left, -2 means two have left, and so on
 # +1 means one crew member has entered, +2 means two have entered, and so on.
 print("Crew member changes in the module: ", astrobod_change)
 #
 # Set the LED matrix to show the crew change
 #
 #if (astrobod_change != 0):
 astroi.update_LED(astrobod_change)
 # put the astrobod_change in the output list
 log_line.append(astrobod_change)
 #print("Logline", log_line)
 # put the log_line data in a string
 output_string = astrof.log_string(log_line)
 print("output string", output_string)
 #
 # write the output_string to the log file
 #
 print("Writing to the log file \n")
 with open(filename,"a") as f:
 f.write(output_string)

Farewell / Adieu / Slan

#sense.show_message("Adieu from Moonty1 Astrobods",
text_colour=[255, 255, 255],
scroll_speed= 0.1) # say Hello!

clear the LED
sense.clear()

16
MCS 2016/2017

b) Astrobods_9b.py
Moonty1
Astronaut detector program: Astrobods

version 9

The functions file

#import libraries
from sense_hat import SenseHat
import time
import statistics
import math

set aliases

sense = SenseHat()

This is a function to get and print the humidity, temperature and pressure.
def what_H_T_P(dp):
 returnstring = []
 humidity = round(sense.get_humidity(), dp) # get the humidity reading
 temp = round(sense.get_temperature(), dp) # get the temperature reading
 pressure = round(sense.get_pressure(), dp) # get the pressure reading
 #put the readings in a string message
 outputstring = "H:" + str(humidity) + "%rH, T:" + str(temp) + "C, P:" + str(pressure) + "mb"
 #print(outputstring)
 returnstring.extend([humidity, temp, pressure])
 return(outputstring)
 #return(returnstring)

This is a function to return the baseline average humidity.
This is calculated to the decimal precision
and for the approximate length of time
and returns the mean humidity
def get_baseline_humidity(sampletime1, dp):
 humidity = round(sense.get_humidity(), dp) # get the humidity reading
 humiditysum = 0 # initialise the running total of humidity readings
 for i in range(0, sampletime1):
 humiditysum = round(humiditysum + humidity, dp)
 #print(i+1, "H: ", humidity, humiditysum) # print the humidity and running total
 time.sleep(1) # pause for 1 second
 humidity = round(sense.get_humidity(), dp) # get the humidity reading
 mean_humidity = round(humiditysum/sampletime1, dp)
 #print("The average humidity over the last", sampletime, " seconds is: ", mean_humidity, "mb")
 return(mean_humidity)

This is a function to monitor how the humidity is changing from the baseline.

17
MCS 2016/2017

If it changes more than 4% than an astronaut may have entered or left the module.

def monitor_humidity(mean_hum, sampletime2, pc, dp):
 #humidity = round(sense.get_humidity(), precision) # get the humidity reading
 humiditydiff = 0 # initialise the difference from the mean
 astrobod_alert = 0 # initialise the astrobod alert
 for i in range(0, sampletime2):
 humidity = round(sense.get_humidity(), dp) # get the humidity reading
 humidity_diff_int = round(humidity - mean_hum, dp) # store difference in humidity_diff_int
 humidity_diff_pc = round(humidity_diff_int/mean_hum*100, dp) # store % difference
 if (abs(humidity_diff_pc) > pc) and (abs(humidity_diff_pc) > abs(astrobod_alert)) :
 # if humidity difference more than one body's humidity and higher than a previous alert
 astrobod_alert = humidity_diff_pc
 # print humidity and difference
 # print(i+1, "H: ", humidity, "delta: ", humidity_diff_int, "mb ", humidity_diff_pc, "%")
 time.sleep(1) # pause for one second
 return (astrobod_alert)

This is a function to write the data in our log line to a comma
delimited string

def log_string(data_line):
 comma_string = ",".join(str(value) for value in data_line)
 comma_string = comma_string + "\n"
 #print("comma_string:", comma_string)
 return(comma_string)

This function sets up the log file

def setup_log_file(filename, dp):
 title_1 = "Moonty1, Proxima, Astrobods, log, file \n"
 title_2 = what_H_T_P(dp)
 headings = [
 "TimeStamp", "Base_H", "S_time", "H_Diff", "Crew_diff"
]
 units = [
 "DMY H:M:S","%rH","s","%","heads"
]
 with open(filename,"w") as f:
 f.write(title_1)
 f.write(",".join(str(value) for value in headings) + "\n")
 f.write(",".join(str(value) for value in units) + "\n")

18
MCS 2016/2017

c) Astrobods_9c.py
Moonty1
Astronaut detector program: Astrobods

version 8c

LED images for Astrobods

#import libraries
from sense_hat import SenseHat
import time
import math

set aliases

sense = SenseHat()

This is our splash screen
def show_splash():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 O = [0, 0, 0] # Black

 question_mark = [
 O, O, G, G, O, O, O, O,
 O, G, O, O, G, G, O, G,
 O, O, G, O, O, O, O, O,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(question_mark)

This is our zero screen
def show_no_change():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 O = [0, 0, 0] # Black

 no_change = [
 O, O, O, O, O, O, O, O,
 O, O, O, O, O, O, O, O,
 O, O, O, O, O, O, O, O,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,

19
MCS 2016/2017

 O, O, O, O, W, O, O, O
]
 sense.set_pixels(no_change)

This is our plus 1 screen
def show_plus_1():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plusone = [
 O, P, O, O, O, O, O, O,
 P, P, P, G, G, G, G, G,
 O, P, O, O, G, O, O, O,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(plusone)

This is our plus 2 screen
def show_plus_2():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plustwo = [
 O, P, O, O, G, O, O, G,
 P, P, P, G, O, G, O, G,
 O, P, O, G, O, O, G, G,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(plustwo)

This is our plus 3 screen
def show_plus_3():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plusthree = [
 O, P, O, O, G, O, G, O,

20
MCS 2016/2017

 P, P, P, G, O, G, O, G,
 O, P, O, G, O, O, O, G,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(plusthree)

This is our plus 4 screen
def show_plus_4():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plusfour = [
 O, P, O, O, O, G, O, O,
 P, P, P, G, G, G, G, G,
 O, P, O, O, O, G, O, O,
 O, O, W, G, G, G, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(plusfour)

This is our plus 5 screen
def show_plus_5():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plusfive = [
 O, P, O, G, O, G, G, G,
 P, P, P, G, O, G, O, G,
 O, P, O, G, G, G, O, G,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(plusfive)

This is our plus 6 screen
def show_plus_6():

21
MCS 2016/2017

 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plussix = [
 O, P, O, G, O, G, G, G,
 P, P, P, G, O, G, O, G,
 O, P, O, G, G, G, G, G,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(plussix)

This is our plus 7 screen
def show_plus_7():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 plusseven = [
 O, P, O, G, G, G, G, G,
 P, P, P, G, O, O, O, O,
 O, P, O, G, O, O, O, O,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(plusseven)

This is our plus 8 screen
def show_plus_8():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 pluseight = [
 O, P, O, G, G, G, G, G,
 P, P, P, G, O, G, O, G,
 O, P, O, G, G, G, G, G,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,

22
MCS 2016/2017

 O, O, W, O, O, O, O, O
]
 sense.set_pixels(pluseight)

This is our minus 1 screen
def show_minus_1():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minusone = [
 O, P, O, O, O, O, O, O,
 O, P, O, G, G, G, G, G,
 O, P, O, O, G, O, O, O,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(minusone)

This is our minus 2 screen
def show_minus_2():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minustwo = [
 O, P, O, O, G, O, O, G,
 O, P, O, G, O, G, O, G,
 O, P, O, G, O, O, G, G,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(minustwo)

This is our minus 3 screen
def show_minus_3():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

23
MCS 2016/2017

 minusthree = [
 O, P, O, O, G, O, G, O,
 O, P, O, G, O, G, O, G,
 O, P, O, G, O, O, O, G,
 O, O, O, O, W, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, O, O, W, O, O, O
]
 sense.set_pixels(minusthree)

This is our minus 4 screen
def show_minus_4():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minusfour = [
 O, P, O, O, O, G, O, O,
 O, P, O, G, G, G, G, G,
 O, P, O, O, O, G, O, O,
 O, O, W, G, G, G, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(minusfour)

This is our minus 5 screen
def show_minus_5():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minusfive = [
 O, P, O, G, O, G, G, G,
 P, P, P, G, O, G, O, G,
 O, P, O, G, G, G, O, G,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(minusfive)

24
MCS 2016/2017

This is our minus 6 screen
def show_minus_6():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minussix = [
 O, P, O, G, O, G, G, G,
 0, P, O, G, O, G, O, G,
 O, P, O, G, G, G, G, G,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(minussix)

This is our minus 7 screen
def show_minus_7():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minusseven = [
 O, P, O, G, G, G, G, G,
 O, P, O, G, O, O, O, O,
 O, P, O, G, O, O, O, O,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,
 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(minusseven)

This is our minus 8 screen
def show_minus_8():
 G = [0, 255, 0] # Green
 W = [255, 255, 255] # White
 P = [255, 0, 255] # Purple
 O = [0, 0, 0] # Black

 minuseight = [
 O, P, O, G, G, G, G, G,
 O, P, O, G, O, G, O, G,
 O, P, O, G, G, G, G, G,
 O, O, W, O, O, O, O, O,
 W, W, O, W, O, O, W, W,
 W, W, W, W, W, W, O, O,

25
MCS 2016/2017

 W, W, O, W, O, O, W, W,
 O, O, W, O, O, O, O, O
]
 sense.set_pixels(minuseight)

This is a function to update the LED matrix to show a crew exit/entry

def update_LED(change):
 if (change == 0):
 show_no_change()
 elif (change == 1):
 show_plus_1()
 elif (change == 2):
 show_plus_2()
 elif (change == 3):
 show_plus_3()
 elif (change == 4):
 show_plus_4()
 elif (change == 5):
 show_plus_5()
 elif (change == 6):
 show_plus_6()
 elif (change == 7):
 show_plus_7()
 elif (change == 8):
 show_plus_-1()
 elif (change == -1):
 show_minus_1()
 elif (change == -2):
 show_minus_2()
 elif (change == -3):
 show_minus_3()
 elif (change == -4):
 show_minus_4()
 elif (change == -5):
 show_minus_5()
 elif (change == -6):
 show_minus_6()
 elif (change == -7):
 show_minus_7()
 elif (change == -8):
 show_minus_8()
 else:
 show_splash()

26
MCS 2016/2017

3. Astrobods Test Data

Timestamp Baseline(%rH) Humidity(%rH) Crew Humidity Difference(%)

28/02/2017 22:02:22 36.91 35.01 0 -1.9

28/02/2017 22:02:42 36.91 34.88 -1 -2.03

28/02/2017 22:02:53 36.91 31.17 -1 -5.74

28/02/2017 22:03:03 36.91 34.88 -1 -2.03

28/02/2017 22:03:13 36.91 47.61 3 10.7

28/02/2017 22:03:23 36.91 44.14 2 7.23

28/02/2017 22:03:34 36.91 40.16 1 3.25

28/02/2017 22:03:44 36.91 39.24 1 2.33

28/02/2017 22:03:54 36.91 38.78 0 1.87

28/02/2017 22:04:04 36.91 38.56 0 1.65

28/02/2017 22:04:15 36.91 38.64 0 1.73

28/02/2017 22:04:25 36.91 38.35 0 1.44

28/02/2017 22:04:35 36.91 38.16 0 1.25

28/02/2017 22:04:46 36.91 38.35 0 1.44

28/02/2017 22:04:56 36.91 39.02 1 2.11

28/02/2017 22:05:06 36.91 38.97 1 2.06

28/02/2017 22:05:16 36.91 38.7 0 1.79

28/02/2017 22:05:27 36.91 39.75 1 2.84

28/02/2017 22:05:37 36.91 38.59 0 1.68

28/02/2017 22:05:47 36.91 39.35 1 2.44

28/02/2017 22:05:57 36.91 39.35 1 2.44

28/02/2017 22:06:08 36.91 39.46 1 2.55

28/02/2017 22:06:18 36.91 38.97 1 2.06

28/02/2017 22:06:28 36.91 39.02 1 2.11

28/02/2017 22:06:38 36.91 38.89 0 1.98

28/02/2017 22:06:49 36.91 38.91 0 2

28/02/2017 22:06:59 36.91 38.51 0 1.6

27
MCS 2016/2017

4. Astrobods Chart

28
MCS 2016/2017

5. Bendyfield Code

a) Bendyfield_9a.py

Moonty1 #

The second Challenge! #

Magnetic Field Direction program: Bendyfield #

This will record the direction of the magnetic field and save it in #
a .csv file to be analysed back on earth. We want to see how it #
varies as the ISS orbits around the earth, if we have enough time. #

It will also monitor changes in the orientation and movement of the #
AstroPi and record them with the magnetic field data. It will also #
monitor any changes in the direction to Geo Magnetic North and record #
these too. We will see if any magnetic variations match changes in #
these measurements in the log file. #

This program will run for approximately 90 minutes #

Team members: Sarah Buckley, Dylan Halpin-Hurly, Rachel Sheehan, #
Sean Murphy (and Mr Begley) #

Version 9 #
This version has been updated slightly to compete at SciFest 2017 #
at CIT on 31st March 2017 by adding more comments. #

Version 7 won a place on the Proxima Mission and will be run on the #
on the ISS in May 2017. #

The main program #

#import libraries
from sense_hat import SenseHat
#from datetime import datetime
from time import gmtime, strftime
import time
import Bendyfield_9b as bendyf
import Bendyfield_9c as bendyi

29
MCS 2016/2017

set aliases

sense = SenseHat()

#############################
Welcome to the program #
En Francais: Bienvenue #
As Gaeilge: Dia dhaobh #
#############################
sense.set_rotation(270) # arrange for the messages to read the right way up in the ISS
#sense.show_message("Moonty1 from Cork: Bendyfield",
text_colour=[128, 128, 128],
scroll_speed= 0.03)
bendyi.show_splash() # show splash image on the LED matrix in white text

#################################
Program Settings #
#################################
precision = 2 # Set the number of decimal places we want
dir_err_margin = 1 # allow for a margin of error in difference in pitch, roll & yaw
runtime = 60*85 # the number of seconds to run the main loop for
log_line = [] # Initialise the variable that we will send to the log file
output_string = "" # initialise the string that will contain the data
#####################################
Log file settings #
#####################################
filename = "Bendyfield.csv"
WRITE_FREQUENCY = 1
bendyf.setup_log_file(filename)

Which way to the Magnetic North Pole? :)
(initialise the Geo North direction)
northpole = bendyf.where_is_santa(precision)
print("North: ", northpole)

What is the orientation?
(this is so that we can check to see if a change in the magnetic field
matches a change in the orientation of the ISS)
Initialise the orientation
b_pry = bendyf.get_P_R_Y(1) # get the initial P, R and Y directions
print("Orientation - b_pry:", b_pry)
same_way_up = 'yes' # Initialise the orientation change

#################
Main Loop #
#################
for count in range(0, runtime):
 #
 # Reset the line that logs the data
 log_line = []
 # Is Geo North still in the same direction?
 # (will this value change as the orbit position changes?)
 check_north = bendyf.where_is_santa(precision)
 if (check_north != northpole): # Is the new reading the same as the base reading

30
MCS 2016/2017

 same_santa = 'no' # If the base reading is not the same, 'no' appears
 northpole = check_north # Make the new reading the base reading
 else:
 same_santa = 'yes' # If they are equal 'yes' will appear
 log_line.append(same_santa) # Record if it has changed or not
 log_line.append(northpole) # Record the north pole direction
 #
 # Has the orientation changed?
 check_pry = bendyf.get_P_R_Y(dir_err_margin)
 if (check_pry != b_pry): # Is the new reading the same as the base reading
 same_way_up = 'no' # If the base reading is not the same, 'no' appears
 b_pry = check_pry # Make the new reading the base reading
 else:
 same_way_up = 'yes' # If they are equal, 'yes' appears
 log_line.append(same_way_up) # Record if it has changed
 pitch = b_pry[0]
 roll = b_pry[1]
 yaw = b_pry[2]
 log_line.extend([pitch, roll, yaw]) # Record the orientation
 #
 # What does the Accelerometer say?
 # (this is so that we can check to see if a change in the magnetic field
 # matches any change in the accelerometer on the ISS such as an orbit boost)
 a_xyz = bendyf.get_the_shakes(precision)
 a_x = a_xyz[0]
 a_y = a_xyz[1]
 a_z = a_xyz[2]
 log_line.extend([a_x, a_y, a_z]) # Record the accelerometer
 #
 # What does the magnetometer say?
 # This is the data we want to analyse later
 magnetic_field = bendyf.magnetic_field(precision)
 m_x = magnetic_field[0]
 m_y = magnetic_field[1]
 m_z = magnetic_field[2]
 #
 timestamp = strftime("%d/%m/%Y %H:%M:%S", gmtime()) # get the date and time
 log_line.append(timestamp) # time stamp the data
 log_line.extend([m_x, m_y, m_z]) # Record the magnetometer
 print(count+1, log_line)
 #
 # Write this line of data to the log file
 print("Writing to the log file \n")
 with open(filename,"a") as f:
 f.write(",".join(str(value) for value in log_line) + "\n")
 #
 # pause for a second
 time.sleep(1)

clear the LED
sense.clear()

31
MCS 2016/2017

b) Bendyfield_9b.py

Moonty1 #
Magnetic Field Direction program: Bendyfield #

version 9 #

The functions file #

#import libraries
from sense_hat import SenseHat
#import time
#import statistics
#import math

set aliases

sense = SenseHat()

This is a function to get the direction of Magnetic North
def where_is_santa(dp):
 santa = round(sense.get_compass(), dp)
print("Magnetic North is at ", santa, "degrees")
 return(santa)

This is a function to reduce the accuracy of the orientation data
def get_P_R_Y(margin):
 pry = sense.get_gyroscope() # get gyro data without the magnetometer or accelerometer
 p = round(pry["pitch"] / margin) # build in margin of error
 r = round(pry["roll"] / margin) # build in margin of error
 y = round(pry["yaw"] / margin) # build in margin of error
 pry_rounded = []
 pry_rounded.extend([p, r, y]) # put rounded readings in a list
 #print(" in def: ", pry_rounded)
 return(pry_rounded) # return the list of rounded readings

This is a function to get the accelerometer data in Gs on each axis
def get_the_shakes(dp):
 accel = sense.get_accelerometer_raw()
 a_x = round(accel["x"], dp) # round off the x reading
 a_y = round(accel["y"], dp) # round off the y reading
 a_z = round(accel["z"], dp) # round off the z reading
 accel_r = []
 accel_r.extend([a_x, a_y, a_z]) # store the rounded readings in a list
print("accelerometer: x=", a_x, "y=", a_y, "z=", a_z)
 return(accel_r) # return the rounded list

32
MCS 2016/2017

This is a function to get the magnetometer data
def magnetic_field(dp):
 mag_field1 = sense.get_compass_raw()
 m_x = round(mag_field1["x"], dp) # round off the x reading
 m_y = round(mag_field1["y"], dp) # round off the y reading
 m_z = round(mag_field1["z"], dp) # round off the z reading
 mag_field2 = []
 mag_field2.extend([m_x, m_y, m_z]) # store the rounded readings in a list
print("Magnetic Field in microteslas: x=", m_x, "y=", m_y, "z=", m_z)
 return(mag_field2) # return the rounded list

Set up the log file and headings
def setup_log_file(logfile):
 title_1 = "Moonty1:, Proxima:, Bendyfield, log, file \n\n"
 header = [
 "SameNorth","GeoNorth",
 "SameWayUp","Pitch","Roll","Yaw",
 "a_X","a_Y","a_Z",
 "Time",
 "m_X","m_Y","m_Z"
]
 units = [
 "yes/no","degrees",
 "yes/no","degrees","degrees","degrees",
 "G","G","G",
 "DMY H:M:S",
 "microTeslas","microTeslas","microTeslas"
]

 with open(logfile , "w") as f:
 f.write(title_1)
 f.write(",".join(str(value) for value in header) + "\n")
 f.write(",".join(str(value) for value in units) + "\n")

33
MCS 2016/2017

c) Bendyfield_9c.py

Moonty1 #
Magnetic Field Direction program: Bendyfield #

version 9 #

LED images for Bendyfield #

#import libraries
from sense_hat import SenseHat
#import time
#import statistics
#import math

set aliases

sense = SenseHat()

This is our splash screen
def show_splash():
 G = [0, 128, 0] # Green
 W = [128, 128, 128] # White
 O = [0, 0, 0] # Black

 splash_screen = [
 G, O, O, G, O, O, O, O,
 O, G, O, O, G, O, O, O,
 O, O, G, G, G, G, G, G,
 O, O, O, W, G, O, O, O,
 O, O, O, G, W, O, O, O,
 O, O, W, W, W, W, W, W,
 O, W, O, O, W, O, O, O,
 W, O, O, W, O, O, O, O
]
 sense.set_pixels(splash_screen)

34
MCS 2016/2017

6. Bendyfield Test Data
SameNo
rth

GeoNor
th

SameWay
Up

Pitch Roll Yaw a_
X

a_Y a_
Z

Time m_X m_Y m_Z

yes/no degrees yes/no degre
es

degre
es

degre
es

g g g DMY H:M:S microTes
las

microTes
las

microTes
las

no 123.74 yes 0 360 124 -0.
2

-0.3
5

0.8
8

26/03/2017
16:41:30

-44.15 -65.82 30.78

no 123.73 no 0 0 124 -0.
2

-0.3
5

0.8
9

26/03/2017
16:41:31

-53.27 -79.61 37.85

yes 123.73 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:32

-57.09 -85.17 40.27

yes 123.73 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:33

-58.71 -87.5 41.07

yes 123.73 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:34

-59.26 -88.34 41.35

yes 123.73 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:35

-59.27 -89.1 41.01

no 123.72 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:36

-59.55 -89.03 41.68

yes 123.72 no 0 360 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:38

-59.49 -89.03 41.62

no 123.71 yes 0 360 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:39

-59.2 -88.72 41.67

yes 123.71 yes 0 360 124 -0.
2

-0.3
5

0.9
1

26/03/2017
16:41:40

-59.47 -88.91 41.58

no 123.7 no 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:41

-59.85 -88.81 41.17

yes 123.7 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:42

-59.75 -88.76 41.73

yes 123.7 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:43

-59.93 -89.05 41.35

yes 123.7 yes 0 0 124 -0.
2

-0.3
5

0.9 26/03/2017
16:41:44

-59.75 -89.22 40.92

35
MCS 2016/2017

7. Bendyfield Charts

36
MCS 2016/2017

37
MCS 2016/2017

